Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 43(32): 5741-5752, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474311

RESUMO

Neurotransmission is shaped by extracellular pH. Alkalization enhances pH-sensitive transmitter release and receptor activation, whereas acidification inhibits these processes and can activate acid-sensitive conductances in the synaptic cleft. Previous work has shown that the synaptic cleft can either acidify because of synaptic vesicular release and/or alkalize because of Ca2+ extrusion by the plasma membrane ATPase (PMCA). The direction of change differs across synapse types. At the mammalian neuromuscular junction (NMJ), the direction and magnitude of pH transients in the synaptic cleft during transmission remain ambiguous. We set out to elucidate the extracellular pH transients that occur at this cholinergic synapse under near-physiological conditions and identify their sources. We monitored pH-dependent changes in the synaptic cleft of the mouse levator auris longus using viral expression of the pseudoratiometric probe pHusion-Ex in the muscle. Using mice from both sexes, a significant and prolonged alkalization occurred when stimulating the connected nerve for 5 s at 50 Hz, which was dependent on postsynaptic intracellular Ca2+ release. Sustained stimulation for a longer duration (20 s at 50 Hz) caused additional prolonged net acidification at the cleft. To investigate the mechanism underlying cleft alkalization, we used muscle-expressed GCaMP3 to monitor the contribution of postsynaptic Ca2+ Activity-induced liberation of intracellular Ca2+ in muscle positively correlated with alkalization of the synaptic cleft, whereas inhibiting PMCA significantly decreased the extent of cleft alkalization. Thus, cholinergic synapses of the mouse NMJ typically alkalize because of cytosolic Ca2+ liberated in muscle during activity, unless under highly strenuous conditions where acidification predominates.SIGNIFICANCE STATEMENT Changes in synaptic cleft pH alter neurotransmission, acting on receptors and channels on both sides of the synapse. Synaptic acidification has been associated with a myriad of diseases in the central and peripheral nervous system. Here, we report that in near-physiological recording conditions the cholinergic neuromuscular junction shows use-dependent bidirectional changes in synaptic cleft pH-immediate alkalinization and a long-lasting acidification under prolonged stimulation. These results provide further insight into physiologically relevant changes at cholinergic synapses that have not been defined previously. Understanding and identifying synaptic pH transients during and after neuronal activity provides insight into short-term synaptic plasticity synapses and may identify therapeutic targets for diseases.


Assuntos
Cálcio , Sinapses , Feminino , Masculino , Animais , Camundongos , Cálcio/metabolismo , Sinapses/fisiologia , Junção Neuromuscular/metabolismo , Transmissão Sináptica/fisiologia , Colinérgicos , Mamíferos
2.
PLoS One ; 18(3): e0283736, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37000822

RESUMO

In studies exploring the potential for nanosecond duration electric pulses to serve as a novel modality for neuromodulation, we found that a 5 ns pulse triggers an immediate rise in [Ca2+]i in isolated bovine adrenal chromaffin cells. To facilitate ongoing efforts to understand underlying mechanisms and to work toward carrying out investigations in cells in situ, we describe the suitability and advantages of using isolated murine adrenal chromaffin cells expressing, in a Cre-dependent manner, the genetically-encoded Ca2+indicator GCaMP6f. Initial experiments confirmed that Ca2+ responses evoked by a 5 ns pulse were similar between fluorescent Ca2+ indicator-loaded murine and bovine chromaffin cells, thereby establishing that 5 ns-elicited excitation of chromaffin cells occurs reproducibly across species. In GCaMP6f-expressing murine chromaffin cells, spontaneous Ca2+ activity as well as nicotinic receptor agonist- and 5 ns evoked-Ca2+ responses consistently displayed similar kinetic characteristics as those in dye-loaded cells but with two-twentyfold greater amplitudes and without photobleaching. The high signal-to-noise ratio of evoked Ca2+ responses as well as spontaneous Ca2+ activity was observed in cells derived from Sox10-Cre, conditional GCaMP6f mice or TH-Cre, conditional GCaMP6f mice, although the number of cells expressing GCaMP6f at sufficiently high levels for achieving high signal-to-noise ratios was greater in Sox10-Cre mice. As in bovine cells, Ca2+ responses elicited in murine GCaMP6f-expressing cells by a 5 ns pulse were mediated by the activation of voltage-gated Ca2+ channels but not tetrodotoxin-sensitive voltage-gated Na+ channels. We conclude that genetically targeting GCaMP6f expression to murine chromaffin cells represents a sensitive and valuable approach to investigate spontaneous, receptor agonist- and nanosecond electric pulse-induced Ca2+ responses in vitro. This approach will also facilitate future studies investigating the effects of ultrashort electric pulses on cells in ex vivo slices of adrenal gland, which will lay the foundation for using nanosecond electric pulses to stimulate neurosecretion in vivo.


Assuntos
Cálcio , Células Cromafins , Animais , Bovinos , Camundongos , Cálcio/metabolismo , Camundongos Transgênicos , Células Cromafins/fisiologia , Glândulas Suprarrenais/metabolismo , Eletricidade , Células Cultivadas
3.
Glia ; 71(4): 926-944, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36479906

RESUMO

Non-myelinating Schwann cells (NMSC) play important roles in peripheral nervous system formation and function. However, the molecular identity of these cells remains poorly defined. We provide evidence that Kir4.1, an inward-rectifying K+ channel encoded by the KCNJ10 gene, is specifically expressed and active in NMSC. Immunostaining revealed that Kir4.1 is present in terminal/perisynaptic SCs (TPSC), synaptic glia at neuromuscular junctions (NMJ), but not in myelinating SCs (MSC) of adult mice. To further examine the expression pattern of Kir4.1, we generated BAC transgenic Kir4.1-CreERT2 mice and crossed them to the tdTomato reporter line. Activation of CreERT2 with tamoxifen after the completion of myelination onset led to robust expression of tdTomato in NMSC, including Remak Schwann cells (RSC) along peripheral nerves and TPSC, but not in MSC. In contrast, activating CreERT2 before and during the onset of myelination led to tdTomato expression in NMSC and MSC. These observations suggest that immature SC express Kir4.1, and its expression is then downregulated selectively in myelin-forming SC. In support, we found that while activating CreERT2 induces tdTomato expression in immature SC, it fails to induce tdTomato in MSC associated with sensory axons in culture. NMSC derived from neonatal sciatic nerve were shown to express Kir4.1 and exhibit barium-sensitive inwardly rectifying macroscopic K+ currents. Thus, this study identified Kir4.1 as a potential modulator of immature SC and NMSC function. Additionally, it established a novel transgenic mouse line to introduce or delete genes in NMSC.


Assuntos
Bainha de Mielina , Células de Schwann , Camundongos , Animais , Células de Schwann/metabolismo , Bainha de Mielina/metabolismo , Camundongos Transgênicos , Nervo Isquiático/metabolismo , Tamoxifeno/farmacologia
4.
Proc Natl Acad Sci U S A ; 119(18): e2123020119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35446689

RESUMO

The peristaltic reflex is a fundamental behavior of the gastrointestinal (GI) tract in which mucosal stimulation activates propulsive contractions. The reflex occurs by stimulation of intrinsic primary afferent neurons with cell bodies in the myenteric plexus and projections to the lamina propria, distribution of information by interneurons, and activation of muscle motor neurons. The current concept is that excitatory cholinergic motor neurons are activated proximal to and inhibitory neurons are activated distal to the stimulus site. We found that atropine reduced, but did not block, colonic migrating motor complexes (CMMCs) in mouse, monkey, and human colons, suggesting a mechanism other than one activated by cholinergic neurons is involved in the generation/propagation of CMMCs. CMMCs were activated after a period of nerve stimulation in colons of each species, suggesting that the propulsive contractions of CMMCs may be due to the poststimulus excitation that follows inhibitory neural responses. Blocking nitrergic neurotransmission inhibited poststimulus excitation in muscle strips and blocked CMMCs in intact colons. Our data demonstrate that poststimulus excitation is due to increased Ca2+ transients in colonic interstitial cells of Cajal (ICC) following cessation of nitrergic, cyclic guanosine monophosphate (cGMP)-dependent inhibitory responses. The increase in Ca2+ transients after nitrergic responses activates a Ca2+-activated Cl− conductance, encoded by Ano1, in ICC. Antagonists of ANO1 channels inhibit poststimulus depolarizations in colonic muscles and CMMCs in intact colons. The poststimulus excitatory responses in ICC are linked to cGMP-inhibited cyclic adenosine monophosphate (cAMP) phosphodiesterase 3a and cAMP-dependent effects. These data suggest alternative mechanisms for generation and propagation of CMMCs in the colon.


Assuntos
Células Intersticiais de Cajal , Colo/fisiologia , Motilidade Gastrointestinal/fisiologia , Miócitos de Músculo Liso , Peristaltismo
5.
Arch Biochem Biophys ; 723: 109252, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35436445

RESUMO

In whole-cell voltage clamped bovine adrenal chromaffin cells maintained at a holding potential of -70 mV, a single 5 ns, 5 MV/m pulse elicited an inward current carried mainly by Na+ that displayed inward rectification and a reversal potential near -3 mV, a voltage consistent with a non-selective cation current. The broad-spectrum inhibitors of transient receptor potential (TRP) channels, La3+ (10 µM), Gd3+ (10 µM), SKF-96365 (50 µM) and 2-aminoethoxydiphenyl borane (2-APB; 100 µM), inhibited the current similarly by ∼72%, ∼83%, ∼68% and ∼76%, respectively. Depleting membrane cholesterol with methyl-ß-cyclodextrin (MßCD; 1-6 mg/ml) or inhibiting phosphatidylinositol 4,5-bisphosphate (PIP2) synthesis with wortmannin (20 and 40 µM) produced a similar level of inhibition on the NEP-induced conductance as the broad spectrum TRP channel inhibitors. Moreover, no additive inhibitory effect was detected by combining MßCD (3 mg/ml), wortmannin (20 µM) and La3+ (10 µM), suggesting that each agent targeted different levels of the same pathway to exert a full effect. RT-PCR experiments revealed robust expression at the mRNA level of TRPC4, TRPC5 and TRPM7 channels for which specific blockers were available. Whereas the TRPM7 blocker FTY720 had no effect, the TRPC4/5 channel inhibitor M084 (20 µM) blocked the conductance by ∼50%, indicating that TRPC4 and/or TRPC5 channel(s) may be partially involved in mediating the NEP-induced current. CP-96345 (20 µM), a specific blocker of the sodium leak current channel (NALCN), also reduced the NEP-induced current. The inhibition was ∼30% and additive to that caused by the TRPC4/5 blocker M084. RT-PCR experiments confirmed the expression of this channel at the mRNA level. Taken as a whole, these data provide evidence that a large fraction of the current evoked by a 5 ns pulse in adrenal chromaffin cells may be carried by both TRPC4/5 channels and the NALCN channel. Understanding the biophysical properties of the NEP-elicited conductance in a neural-type cell will be extremely valuable for the future development of NEP stimulation approaches for neuromodulation.


Assuntos
Células Cromafins , Canais de Cátion TRPM , Animais , Cátions/metabolismo , Bovinos , Células Cromafins/metabolismo , Potenciais da Membrana , RNA Mensageiro/metabolismo , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPM/metabolismo , Wortmanina/metabolismo , Wortmanina/farmacologia
6.
Gastroenterology ; 161(2): 608-622.e7, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33895170

RESUMO

BACKGROUND & AIMS: Constipation is commonly associated with diabetes. Serotonin (5-HT), produced predominantly by enterochromaffin (EC) cells via tryptophan hydroxylase 1 (TPH1), is a key modulator of gastrointestinal (GI) motility. However, the role of serotonergic signaling in constipation associated with diabetes is unknown. METHODS: We generated EC cell reporter Tph1-tdTom, EC cell-depleted Tph1-DTA, combined Tph1-tdTom-DTA, and interstitial cell of Cajal (ICC)-specific Kit-GCaMP6 mice. Male mice and surgically ovariectomized female mice were fed a high-fat high-sucrose diet to induce diabetes. The effect of serotonergic signaling on GI motility was studied by examining 5-HT receptor expression in the colon and in vivo GI transit, colonic migrating motor complexes (CMMCs), and calcium imaging in mice treated with either a 5-HT2B receptor (HTR2B) antagonist or agonist. RESULTS: Colonic transit was delayed in males with diabetes, although colonic Tph1+ cell density and 5-HT levels were increased. Colonic transit was not further reduced in diabetic mice by EC cell depletion. The HTR2B protein, predominantly expressed by colonic ICCs, was markedly decreased in the colonic muscles of males and ovariectomized females with diabetes. Ca2+ activity in colonic ICCs was decreased in diabetic males. Treatment with an HTR2B antagonist impaired CMMCs and colonic motility in healthy males, whereas treatment with an HTR2B agonist improved CMMCs and colonic motility in males with diabetes. Colonic transit in ovariectomized females with diabetes was also improved significantly by the HTR2B agonist treatment. CONCLUSIONS: Impaired colonic motility in mice with diabetes was improved by enhancing HTR2B signaling. The HTR2B agonist may provide therapeutic benefits for constipation associated with diabetes.


Assuntos
Colo/efeitos dos fármacos , Constipação Intestinal/prevenção & controle , Complicações do Diabetes/prevenção & controle , Motilidade Gastrointestinal/efeitos dos fármacos , Indóis/farmacologia , Células Intersticiais de Cajal/efeitos dos fármacos , Complexo Mioelétrico Migratório/efeitos dos fármacos , Receptor 5-HT2B de Serotonina/efeitos dos fármacos , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Tiofenos/farmacologia , Animais , Sinalização do Cálcio , Colo/metabolismo , Colo/fisiopatologia , Constipação Intestinal/etiologia , Constipação Intestinal/metabolismo , Constipação Intestinal/fisiopatologia , Complicações do Diabetes/metabolismo , Complicações do Diabetes/fisiopatologia , Modelos Animais de Doenças , Feminino , Genes Reporter , Células Intersticiais de Cajal/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ovariectomia , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Serotonina/metabolismo , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
7.
Dev Biol ; 476: 272-281, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33905720

RESUMO

Muscle function is dependent on innervation by the correct motor nerves. Motor nerves are composed of motor axons which extend through peripheral tissues as a compact bundle, then diverge to create terminal nerve branches to specific muscle targets. As motor nerves approach their targets, they undergo a transition where the fasciculated nerve halts further growth then after a pause, the nerve later initiates branching to muscles. This transition point is potentially an intermediate target or guidepost to present specific cellular and molecular signals for navigation. Here we describe the navigation of the oculomotor nerve and its association with developing muscles in mouse embryos. We found that the oculomotor nerve initially grew to the eye three days prior to the appearance of any extraocular muscles. The oculomotor axons spread to form a plexus within a mass of cells, which included precursors of extraocular muscles and other orbital tissues and expressed the transcription factor Pitx2. The nerve growth paused in the plexus for more than two days, persisting during primary extraocular myogenesis, with a subsequent phase in which the nerve branched out to specific muscles. To test the functional significance of the nerve contact with Pitx2+ cells in the plexus, we used two strategies to genetically ablate Pitx2+ cells or muscle precursors early in nerve development. The first strategy used Myf5-Cre-mediated expression of diphtheria toxin A to ablate muscle precursors, leading to loss of extraocular muscles. The oculomotor axons navigated to the eye to form the main nerve, but subsequently largely failed to initiate terminal branches. The second strategy studied Pitx2 homozygous mutants, which have early apoptosis of Pitx2-expressing precursor cells, including precursors for extraocular muscles and other orbital tissues. Oculomotor nerve fibers also grew to the eye, but failed to stop to form the plexus, instead grew long ectopic projections. These results show that neither Pitx2 function nor Myf5-expressing cells are required for oculomotor nerve navigation to the eye. However, Pitx2 function is required for oculomotor axons to pause growth in the plexus, while Myf5-expressing cells are required for terminal branch initiation.


Assuntos
Músculos Oculomotores/inervação , Nervo Oculomotor/embriologia , Animais , Axônios/metabolismo , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Desenvolvimento Muscular , Fator Regulador Miogênico 5/metabolismo , Músculos Oculomotores/crescimento & desenvolvimento , Músculos Oculomotores/metabolismo , Nervo Oculomotor/metabolismo , Gravidez , Fatores de Transcrição/metabolismo
8.
J Med Chem ; 63(19): 11131-11148, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32894018

RESUMO

Inhibitors of muscle myosin ATPases are needed to treat conditions that could be improved by promoting muscle relaxation. The lead compound for this study ((3-(N-butylethanimidoyl)ethyl)-4-hydroxy-2H-chromen-2-one; BHC) was previously discovered to inhibit skeletal myosin II. BHC and 34 analogues were synthesized to explore structure-activity relationships. The properties of analogues, including solubility, stability, and toxicity, suggest that the BHC scaffold may be useful for developing therapeutics. Inhibition of actin-activated ATPase activity of fast skeletal and cardiac muscle myosin II, inhibition of skeletal muscle contractility ex vivo, and slowing of in vitro actin-sliding velocity were measured. Several analogues with aromatic side arms showed improved potency (half-maximal inhibitory concentration (IC50) <1 µM) and selectivity (≥12-fold) for skeletal myosin versus cardiac myosin compared to BHC. Several analogues blocked neurotransmission, suggesting that they are selective for nonmuscle myosin II over skeletal myosin. Competition and molecular docking studies suggest that BHC and blebbistatin bind to the same site on myosin.


Assuntos
4-Hidroxicumarinas/química , 4-Hidroxicumarinas/farmacologia , Iminas/química , Miosinas/antagonistas & inibidores , 4-Hidroxicumarinas/síntese química , Adenosina Trifosfatases/antagonistas & inibidores , Simulação de Acoplamento Molecular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Relação Estrutura-Atividade
9.
Neurosci Lett ; 729: 134959, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32339610

RESUMO

In addition to providing structural, metabolic and trophic support to neurons, glial cells of the central, peripheral and enteric nervous systems (CNS, PNS, ENS) respond to and regulate neural activity. One of the most well characterized features of this response is an increase of intracellular calcium. Astrocytes at synapses of the CNS, oligodendrocytes along axons of the CNS, enteric glia associated with the cell bodies and axonal varicosities of the ENS, and Schwann cells at the neuromuscular junction (NMJ) and along peripheral nerves of the PNS, all exhibit this response. Recent technical advances have facilitated the imaging of neural activity-dependent calcium responses in large populations of glial cells and thus provided a new tool to evaluate the physiological significance of these responses. This mini-review summarizes the mechanisms and functional role of activity-induced calcium signaling within Schwann cells, including terminal/perisynaptic Schwann cells (TPSCs) at the NMJ and axonal Schwann cells (ASCs) within peripheral nerves.


Assuntos
Sinalização do Cálcio/fisiologia , Comunicação Celular/fisiologia , Junção Neuromuscular/fisiologia , Células de Schwann/metabolismo , Animais , Humanos , Neuroglia/metabolismo , Neurônios/metabolismo
10.
Am J Physiol Gastrointest Liver Physiol ; 317(2): G210-G221, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31268770

RESUMO

The enteric nervous system in the large intestine generates two important patterns relating to motility: 1) propagating rhythmic peristaltic smooth muscle contractions referred to as colonic migrating motor complexes (CMMCs) and 2) tonic inhibition, during which colonic smooth muscle contractions are suppressed. The precise neurobiological substrates underlying each of these patterns are unclear. Using transgenic animals expressing the genetically encoded calcium indicator GCaMP3 to monitor activity or the optogenetic actuator channelrhodopsin (ChR2) to drive activity in defined enteric neuronal subpopulations, we provide evidence that cholinergic and nitrergic neurons play significant roles in mediating CMMCs and tonic inhibition, respectively. Nitrergic neurons [neuronal nitric oxide synthase (nNOS)-positive neurons] expressing GCaMP3 exhibited higher levels of activity during periods of tonic inhibition than during CMMCs. Consistent with these findings, optogenetic activation of ChR2 in nitrergic neurons depressed ongoing CMMCs. Conversely, cholinergic neurons [choline acetyltransferase (ChAT)-positive neurons] expressing GCaMP3 markedly increased their activity during the CMMC. Treatment with the NO synthesis inhibitor Nω-nitro-l-arginine also augmented the activity of ChAT-GCaMP3 neurons, suggesting that the reciprocal patterns of activity exhibited by nitrergic and cholinergic enteric neurons during distinct phases of colonic motility may be related.NEW & NOTEWORTHY Correlating the activity of neuronal populations in the myenteric plexus to distinct periods of gastrointestinal motility is complicated by the difficulty of measuring the activity of specific neuronal subtypes. Here, using mice expressing genetically encoded calcium indicators or the optical actuator channelrhodopsin-2, we provide compelling evidence that cholinergic and nitrergic neurons play important roles in mediating coordinated propagating peristaltic contractions or tonic inhibition, respectively, in the murine colon.


Assuntos
Neurônios Colinérgicos , Colo , Neurônios Nitrérgicos , Nitroarginina/farmacologia , Peristaltismo , Animais , Animais Geneticamente Modificados , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/fisiologia , Colo/inervação , Colo/fisiologia , Sistema Nervoso Entérico/efeitos dos fármacos , Sistema Nervoso Entérico/fisiologia , Inibidores Enzimáticos/farmacologia , Camundongos , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Complexo Mioelétrico Migratório/efeitos dos fármacos , Complexo Mioelétrico Migratório/fisiologia , Neurônios Nitrérgicos/efeitos dos fármacos , Neurônios Nitrérgicos/fisiologia , Óxido Nítrico Sintase/antagonistas & inibidores , Optogenética , Peristaltismo/efeitos dos fármacos , Peristaltismo/fisiologia
11.
PLoS Genet ; 15(3): e1007948, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30870413

RESUMO

Glial cells regulate multiple aspects of synaptogenesis. In the absence of Schwann cells, a peripheral glial cell, motor neurons initially innervate muscle but then degenerate. Here, using a genetic approach, we show that neural activity-regulated negative factors produced by muscle drive neurodegeneration in Schwann cell-deficient mice. We find that thrombin, the hepatic serine protease central to the hemostatic coagulation cascade, is one such negative factor. Trancriptomic analysis shows that expression of the antithrombins serpin C1 and D1 is significantly reduced in Schwann cell-deficient mice. In the absence of peripheral neuromuscular activity, neurodegeneration is completely blocked, and expression of prothrombin in muscle is markedly reduced. In the absence of muscle-derived prothrombin, neurodegeneration is also markedly reduced. Together, these results suggest that Schwann cells regulate NMJs by opposing the effects of activity-regulated, muscle-derived negative factors and provide the first genetic evidence that thrombin plays a central role outside of the coagulation system.


Assuntos
Antitrombina III/genética , Cofator II da Heparina/genética , Junção Neuromuscular/genética , Protrombina/genética , Sinapses/genética , Animais , Perfilação da Expressão Gênica , Camundongos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Músculo Esquelético/metabolismo , Degeneração Neural/genética , Neuroglia , Junção Neuromuscular/crescimento & desenvolvimento , Células de Schwann/metabolismo , Trombina/genética
12.
J Vis Exp ; (140)2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30346388

RESUMO

The electrical activity of cells in tissues can be monitored by electrophysiological techniques, but these are usually limited to the analysis of individual cells. Since an increase of intracellular calcium (Ca2+) in the cytosol often occurs because of the electrical activity, or in response to a myriad of other stimuli, this process can be monitored by the imaging of cells loaded with fluorescent calcium-sensitive dyes.  However, it is difficult to image this response in an individual cell type within whole tissue because these dyes are taken up by all cell types within the tissue. In contrast, genetically encoded calcium indicators (GECIs) can be expressed by an individual cell type and fluoresce in response to an increase of intracellular Ca2+, thus permitting the imaging of Ca2+ signaling in entire populations of individual cell types. Here, we apply the use of the GECIs GCaMP3/6 to the mouse neuromuscular junction, a tripartite synapse between motor neurons, skeletal muscle, and terminal/perisynaptic Schwann cells. We demonstrate the utility of this technique in classic ex vivo tissue preparations. Using an optical splitter, we perform dual-wavelength imaging of dynamic Ca2+ signals and a static label of the neuromuscular junction (NMJ) in an approach that could be easily adapted to monitor two cell-specific GECI or genetically encoded voltage indicators (GEVI) simultaneously. Finally, we discuss the routines used to capture spatial maps of fluorescence intensity. Together, these optical, transgenic, and analytic techniques can be employed to study the biological activity of distinct cell subpopulations at the NMJ in a wide variety of contexts.


Assuntos
Sinalização do Cálcio/fisiologia , Diafragma/inervação , Junção Neuromuscular/metabolismo , Imagem Óptica/métodos , Animais , Cálcio/metabolismo , Sinalização do Cálcio/genética , Corantes Fluorescentes/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
13.
J Neurosci ; 38(40): 8650-8665, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30143570

RESUMO

Terminal or perisynaptic Schwann cells (TPSCs) are nonmyelinating, perisynaptic glial cells at the neuromuscular junction (NMJ) that respond to neural activity by increasing intracellular calcium (Ca2+) and regulate synaptic function. The onset of activity-induced TPSC Ca2+ responses, as well as whether axonal Schwann cells (ASCs) along the nerve respond to nerve stimulation during development, is unknown. Here, we show that phrenic nerve stimulation in developing male and female mice elicited Ca2+ responses in both ASCs and TPSCs at embryonic day 14. ASC responses were lost in a proximo-distal gradient over time, but could continue to be elicited by bath application of neurotransmitter, suggesting that a loss of release rather than a change in ASC competence accounted for this response gradient. Similar to those of early postnatal TPSCs, developing ASC/TPSC responses were mediated by purinergic P2Y1 receptors. The loss of ASC Ca2+ responses was correlated to the proximo-distal disappearance of synaptophysin immunoreactivity and synaptic vesicles in phrenic axons. Accordingly, developing ASC Ca2+ responses were blocked by botulinum toxin. Interestingly, the loss of ASC Ca2+ responses was also correlated to the proximo-distal development of myelination. Finally, compared with postnatal TPSCs, neonatal TPSCs and ASCs displayed Ca2+ signals in response to lower frequencies and shorter durations of nerve stimulation. Together, these results with GCaMP3-expressing Schwann cells provide ex vivo evidence that both axons and presynaptic terminals initially exhibit activity-induced vesicular release of neurotransmitter, but that the subsequent loss of axonal synaptic vesicles accounts for the postnatal restriction of vesicular release to the NMJ.SIGNIFICANCE STATEMENT Neural activity regulates multiple aspects of development, including myelination. Whether the excitation of developing neurons in vivo results in the release of neurotransmitter from both axons and presynaptic terminals is unclear. Here, using mice expressing the genetically encoded calcium indicator GCaMP3 in Schwann cells, we show that both terminal/perisynaptic Schwann cells at the diaphragm neuromuscular junction and axonal Schwann cells along the phrenic nerve exhibit activity-induced calcium responses early in development, mediated by the vesicular release of ATP from the axons of motor neurons acting on P2Y1 receptors. These ex vivo findings corroborate classic in vitro studies demonstrating transmitter release by developing axons, and thus represent a tool to study the mechanisms and significance of this process during embryonic development.


Assuntos
Sinalização do Cálcio , Junção Neuromuscular/embriologia , Terminações Pré-Sinápticas/metabolismo , Células de Schwann/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Junção Neuromuscular/metabolismo , Junção Neuromuscular/ultraestrutura , Nervo Frênico/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Células de Schwann/ultraestrutura , Vesículas Sinápticas/ultraestrutura
14.
Elife ; 72018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29384476

RESUMO

Perisynaptic glial cells respond to neural activity by increasing cytosolic calcium, but the significance of this pathway is unclear. Terminal/perisynaptic Schwann cells (TPSCs) are a perisynaptic glial cell at the neuromuscular junction that respond to nerve-derived substances such as acetylcholine and purines. Here, we provide genetic evidence that activity-induced calcium accumulation in neonatal TPSCs is mediated exclusively by one subtype of metabotropic purinergic receptor. In P2ry1 mutant mice lacking these responses, postsynaptic, rather than presynaptic, function was altered in response to nerve stimulation. This impairment was correlated with a greater susceptibility to activity-induced muscle fatigue. Interestingly, fatigue in P2ry1 mutants was more greatly exacerbated by exposure to high potassium than in control mice. High potassium itself increased cytosolic levels of calcium in TPSCs, a response which was also reduced P2ry1 mutants. These results suggest that activity-induced calcium responses in TPSCs regulate postsynaptic function and muscle fatigue by regulating perisynaptic potassium.


Assuntos
Sinalização do Cálcio , Fadiga Muscular , Receptores Purinérgicos P2Y1/metabolismo , Células de Schwann/fisiologia , Animais , Camundongos , Camundongos Transgênicos , Receptores Purinérgicos P2Y1/deficiência
15.
Mol Ther ; 25(6): 1395-1407, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28391962

RESUMO

Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by mutations in the dystrophin gene, resulting in a complete loss of the dystrophin protein. Dystrophin is a critical component of the dystrophin glycoprotein complex (DGC), which links laminin in the extracellular matrix to the actin cytoskeleton within myofibers and provides resistance to shear stresses during muscle activity. Loss of dystrophin in DMD patients results in a fragile sarcolemma prone to contraction-induced muscle damage. The α7ß1 integrin is a laminin receptor protein complex in skeletal and cardiac muscle and a major modifier of disease progression in DMD. In a muscle cell-based screen for α7 integrin transcriptional enhancers, we identified a small molecule, SU9516, that promoted increased α7ß1 integrin expression. Here we show that SU9516 leads to increased α7B integrin in murine C2C12 and human DMD patient myogenic cell lines. Oral administration of SU9516 in the mdx mouse model of DMD increased α7ß1 integrin in skeletal muscle, ameliorated pathology, and improved muscle function. We show that these improvements are mediated through SU9516 inhibitory actions on the p65-NF-κB pro-inflammatory and Ste20-related proline alanine rich kinase (SPAK)/OSR1 signaling pathways. This study identifies a first in-class α7 integrin-enhancing small-molecule compound with potential for the treatment of DMD.


Assuntos
Imidazóis/farmacologia , Indóis/farmacologia , Integrinas/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Progressão da Doença , Feminino , Fibrose , Humanos , Integrinas/agonistas , Camundongos , Camundongos Endogâmicos mdx , Modelos Biológicos , Desenvolvimento Muscular/efeitos dos fármacos , Força Muscular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
16.
Front Cell Neurosci ; 10: 276, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27990107

RESUMO

The failure to transmit neural action potentials (APs) into muscle APs is referred to as neuromuscular transmission failure (NTF). Although synaptic dysfunction occurs in a variety of neuromuscular diseases and impaired neurotransmission contributes to muscle fatigue, direct evaluation of neurotransmission by measurement of successfully transduced muscle APs is difficult due to the subsequent movements produced by muscle. Moreover, the voltage-gated sodium channel inhibitor used to study neurotransmitter release at the adult neuromuscular junction is ineffective in embryonic tissue, making it nearly impossible to precisely measure any aspect of neurotransmission in embryonic lethal mouse mutants. In this study we utilized 3-(N-butylethanimidoyl)-4-hydroxy-2H-chromen-2-one (BHC), previously identified in a small-molecule screen of skeletal muscle myosin inhibitors, to suppress movements without affecting membrane currents. In contrast to previously characterized drugs from this screen such as N-benzyl-p-toluene sulphonamide (BTS), which inhibit skeletal muscle myosin ATPase activity but also block neurotransmission, BHC selectively blocked nerve-evoked muscle contraction without affecting neurotransmitter release. This feature allowed a detailed characterization of neurotransmission in both embryonic and adult mice. In the presence of BHC, neural APs produced by tonic stimulation of the phrenic nerve at rates up to 20 Hz were successfully transmitted into muscle APs. At higher rates of phrenic nerve stimulation, NTF was observed. NTF was intermittent and characterized by successful muscle APs following failed ones, with the percentage of successfully transmitted muscle APs diminishing over time. Nerve stimulation rates that failed to produce NTF in the presence of BHC similarly failed to produce a loss of peak muscle fiber shortening, which was examined using a novel optical method of muscle fatigue, or a loss of peak cytosolic calcium transient intensity, examined in whole populations of muscle cells expressing the genetically-encoded calcium indicator GCaMP3. Most importantly, BHC allowed for the first time a detailed analysis of synaptic transmission, calcium signaling and fatigue in embryonic mice, such as in Vamp2 mutants reported here, that die before or at birth. Together, these studies illustrate the wide utility of BHC in allowing stable measurements of neuromuscular function.

17.
J Neuropathol Exp Neurol ; 75(4): 334-46, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26921370

RESUMO

Mutations in peripheral myelin protein 22 (PMP22) result in the most common form of Charcot-Marie-Tooth (CMT) disease, CMT1A. This hereditary peripheral neuropathy is characterized by dysmyelination of peripheral nerves, reduced nerve conduction velocity, and muscle weakness. APMP22 point mutation in L16P (leucine 16 to proline) underlies a form of human CMT1A as well as the Trembler-J mouse model of CMT1A. Homozygote Trembler-J mice (Tr(J)) die early postnatally, fail to make peripheral myelin, and, therefore, are more similar to patients with congenital hypomyelinating neuropathy than those with CMT1A. Because recent studies of inherited neuropathies in humans and mice have demonstrated that dysfunction and degeneration of neuromuscular synapses or junctions (NMJs) often precede impairments in axonal conduction, we examined the structure and function of NMJs in Tr(J)mice. Although synapses appeared to be normally innervated even in end-stage Tr(J)mice, the growth and maturation of the NMJs were altered. In addition, the amplitudes of nerve-evoked muscle endplate potentials were reduced and there was transmission failure during sustained nerve stimulation. These results suggest that the severe congenital hypomyelinating neuropathy that characterizes Tr(J)mice results in structural and functional deficits of the developing NMJ.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Modelos Animais de Doenças , Proteínas da Mielina/genética , Doenças da Junção Neuromuscular/etiologia , Doenças da Junção Neuromuscular/patologia , Animais , Animais Recém-Nascidos , Diafragma/patologia , Diafragma/ultraestrutura , Estimulação Elétrica , Potenciais Evocados/genética , Homozigoto , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Microscopia Eletrônica , Condução Nervosa/genética , Junção Neuromuscular/patologia , Junção Neuromuscular/ultraestrutura , Doenças da Junção Neuromuscular/genética , Mutação Puntual/genética
18.
Front Cell Neurosci ; 9: 436, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26617487

RESUMO

Genetically encoded Ca(2+) indicators (GECIs) have been used extensively in many body systems to detect Ca(2+) transients associated with neuronal activity. Their adoption in enteric neurobiology has been slower, although they offer many advantages in terms of selectivity, signal-to-noise and non-invasiveness. Our aims were to utilize a number of cell-specific promoters to express the Ca(2+) indicator GCaMP3 in different classes of neurons and glia to determine their effectiveness in measuring activity in enteric neural networks during colonic motor behaviors. We bred several GCaMP3 mice: (1) Wnt1-GCaMP3, all enteric neurons and glia; (2) GFAP-GCaMP3, enteric glia; (3) nNOS-GaMP3, enteric nitrergic neurons; and (4) ChAT-GCaMP3, enteric cholinergic neurons. These mice allowed us to study the behavior of the enteric neurons in the intact colon maintained at a physiological temperature, especially during the colonic migrating motor complex (CMMC), using low power Ca(2+) imaging. In this preliminary study, we observed neuronal and glial cell Ca(2+) transients in specific cells in both the myenteric and submucous plexus in all of the transgenic mice variants. The number of cells that could be simultaneously imaged at low power (100-1000 active cells) through the undissected gut required advanced motion tracking and analysis routines. The pattern of Ca(2+) transients in myenteric neurons showed significant differences in response to spontaneous, oral or anal stimulation. Brief anal elongation or mucosal stimulation, which evokes a CMMC, were the most effective stimuli and elicited a powerful synchronized and prolonged burst of Ca(2+) transients in many myenteric neurons, especially when compared with the same neurons during a spontaneous CMMC. In contrast, oral elongation, which normally inhibits CMMCs, appeared to suppress Ca(2+) transients in some of the neurons active during a spontaneous or an anally evoked CMMC. The activity in glial networks appeared to follow neural activity but continued long after neural activity had waned. With these new tools an unprecedented level of detail can be recorded from the enteric nervous system (ENS) with minimal manipulation of tissue. These techniques can be extended in order to better understand the roles of particular enteric neurons and glia during normal and disordered motility.

19.
Biol Reprod ; 92(4): 102, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25788664

RESUMO

Growing evidence suggests important roles for specialized platelet-derived growth factor receptor alpha-positive (PDGFRalpha(+)) cells in regulating the behaviors of visceral smooth muscle organs. Examination of the female reproductive tracts of mice and monkeys showed that PDGFRalpha(+) cells form extensive networks in ovary, oviduct, and uterus. PDGFRalpha(+) cells were located in discrete locations within these organs, and their distribution and density were similar in rodents and primates. PDGFRalpha(+) cells were distinct from smooth muscle cells and interstitial cells of Cajal (ICC). This was demonstrated with immunohistochemical techniques and by performing molecular expression studies on PDGFRalpha(+) cells from mice with enhanced green fluorescent protein driven off of the endogenous promoter for Pdgfralpha. Significant differences in gene expression were found in PDGFRalpha(+) cells from ovary, oviduct, and uterus. Differences in gene expression were also detected in cells from different tissue regions within the same organ (e.g., uterine myometrium vs. endometrium). PDGFRalpha(+) cells are unlikely to provide pacemaker activity because they lack significant expression of key pacemaker genes found in ICC (Kit and Ano1). Gja1 encoding connexin 43 was expressed at relatively high levels in PDGFRalpha(+) cells (except in the ovary), suggesting these cells can form gap junctions to one another and neighboring smooth muscle cells. PDGFRalpha(+) cells also expressed the early response transcription factor and proto-oncogene Fos, particularly in the ovary. These data demonstrate extensive distribution of PDGFRalpha(+) cells throughout the female reproductive tract. These cells are a heterogeneous population of cells that are likely to contribute to different aspects of physiological regulation in the various anatomical niches they occupy.


Assuntos
Genitália Feminina/citologia , Animais , Conexina 43/biossíntese , Conexina 43/genética , Ciclo Estral , Feminino , Proteínas de Fluorescência Verde , Células Intersticiais de Cajal , Macaca fascicularis , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Especificidade da Espécie
20.
Nat Neurosci ; 14(3): 324-30, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21278733

RESUMO

Positive and negative regulation of neurotransmitter receptor aggregation on the postsynaptic membrane is a critical event during synapse formation. Acetylcholine (ACh) and agrin are two opposing signals that regulate ACh receptor (AChR) clustering during neuromuscular junction (NMJ) development. ACh induces dispersion of AChR clusters that are not stabilized by agrin via a cyclin-dependent kinase 5 (Cdk5)-mediated mechanism, but regulation of Cdk5 activation is poorly understood. We found that the intermediate filament protein nestin physically interacts with Cdk5 and is required for ACh-induced association of p35, the co-activator of Cdk5, with the muscle membrane. Blockade of nestin-dependent signaling inhibited ACh-induced Cdk5 activation and the dispersion of AChR clusters in cultured myotubes. Similar to the effects of Cdk5 gene inactivation, knockdown of nestin in agrin-deficient mouse embryos substantially restored AChR clusters. These results suggest that nestin is required for ACh-induced, Cdk5-dependent dispersion of AChR clusters during NMJ development.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Filamentos Intermediários/metabolismo , Desenvolvimento Muscular/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Junção Neuromuscular/fisiologia , Junção Neuromuscular/ultraestrutura , Acetilcolina/metabolismo , Agrina/genética , Agrina/metabolismo , Animais , Linhagem Celular , Quinase 5 Dependente de Ciclina/metabolismo , Ativação Enzimática , Proteínas de Filamentos Intermediários/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Nestina , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...